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J.  Phys. A: Math. Gen. 20 (1987) L331-L335. Printed in the UK 

L E n E R  TO THE EDITOR 

On the boundaries and density of partition function 
temperature zeros for the two-dimensional Ising model 

John Stephenson 
Physics Department, University of Alberta, Edmonton, Alberta, Canada T6G 2J1 

Received 28 October 1986 

Abstract. Explicit expressions, which determine the boundaries of the regions containing 
temperature zeros of the partition function of the two-dimensional lsing model on an 
anisotropic triangular lattice, are obtained, along with a general formula for the density 
of zeros valid everywhere in regions containing zeros. 

Recent numerical and algebraic studies by several authors (Stephenson and Couzens 
1984, Stephenson and van Aalst 1986, van Saarloos and Kurtze 1984, Wood 1985) of 
the temperature zeros of the partition function of the two-dimensional Ising model on 
quadratic and triangular lattices have revealed that these zeros are generally confined 
to finite regions of the complex plane of the Boltzmann factor for the interaction energy. 

From the mathematical point of view, the occurrence and location of the boundaries 
of these regions is of some interest. It is easy to see, although proof seems to be 
lacking, in the cases of the quadratic and partially anisotropic triangular lattices, that 
the relevant boundaries are determined by giving special values to the angles in the 
polynomial factors whose roots yield the partition function zeros. However, on a 
general anisotropic triangular lattice, the boundary problem cannot be resolved by 
such elementary observations and a more systematic approach is required. 

In this letter, I show first quite generally how the boundaries of a region containing 
zeros of any two-parameter family of functions of a complex variable can be located 
in the complex plane. Then I derive the explicit ‘boundary equation’ for the zeros of 
the Ising model partition function on a general anisotropic triangular lattice. The 
known results for the quadratic and partially anisotropic triangular lattices are included, 
and are now derived, as special cases of the more general result. 

Furthermore, I have rearranged the defining expression for the (two-dimensional) 
density of zeros into a form which permits its numerical evaluation everywhere in the 
regions of the complex plane which contain zeros. Moreover, from this new expression 
one sees that the density of zeros is infinite on the boundary. 

Details of the numerical calculations of boundaries and densities of zeros will be 
presented elsewhere. 

The polynomial factors which determine the zeros of the partition function of the 
Ising model on an anisotropic rn x n two-dimensional triangular lattice have the form 
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where 
dr  = ( 2 r  - l ) T / m  r =  1, .  . . , m 

s = 1, . . . , n. 

If the three interactions on the triangular lattice are J ,  , J 2 ,  J3 along the horizontal, 
vertical and diagonal axes, respectively, and J is their greatest common factor, then 
one has J ,  = aJ, J2 = bJ, J3 = cJ, for integer a, 6, c, and the Boltzmann factor is 

( 2 )  

(by = ( 2 s  - 1)7r/n 

z = x +  iy = exp(-J/k,T). 

A = 1 + Z 2 ( o + b )  + Z 2 ( h + c )  + z 2 ( ~ + ~ )  = 1 + z2d + Z2' + Z2f  

In (1) A, E, C, 0, are polynomials in z :  

B = 2 z b + ' ( z Z a - 1 ) = 2 ( z d f ' - f )  

c = 2 Z C + a (  Z Z b  - 1) = 2( Z/+d - z') 

D = 2 Z O + b (  Z*C - 1) = q z ' + f  - z d )  

where 
d = a + b  e = c + a  f = b + c .  

Thus we have a two-parameter set of zeros, determined by 

f = O  sog(x,Y; 4 r , 4 s ) = O  and ~ ( x , Y ;  9 r , 4 s ) = O .  ( 5 )  
Now suppose in the complex plane z = x + iy we change x while keeping y fixed 

within a region containing zeros where f = 0, thereby inducing corresponding changes 
in the values of +r and &. These changes are related through the partial derivatives 
of g and h with respect to x: 

or in a more compact notation, denoting derivatives of g and h with respect to 4r and 
4- by subscripts r and s: 

( 7 )  

Thus we have a pair of simultaneous linear equations for 4rx and &. These equations 
fail to have a solution on a boundary where the determinant of the coefficients vanishes: 

(8) 
Similarly, if one keeps x fixed and changes y instead, one obtains two equations for 

(9) 

gx = - [ g A r x  + gs4sxl hx = - [ h r 4 r x  + hs4sxI .  

g r h s  - gshr = 0. 

9,. and A y :  

gy = - [ g d r y  + g s d ~ s y l  h y  = -[ h r 9 r j '  + hs4s.v 1 
which have no solution for c $ ~ ~  and 4sy when the same equation (8) holds. So equation 
(8) becomes our 'boundary equation'. 

The boundary equation can also be derived by the following alternative method. 
We consider the case when both parameters vary along a boundary. Following the 
method described by Piaggio (1965, ch 6 )  in his treatise on differential equations, we 
solve the equation h = 0 in ( 5 )  for 4, in terms of $J,, x and y ,  and substitute in g, so 

g(x, y; cbr, y ;  4 r ) )  = 0. (10) 
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The above equation g = 0 represents a one-parameter (4 , )  family of curves in the x, y 
plane. The envelope of this set of curves is, following Piaggio, obtained by differentiat- 
ing with respect to the parameter, to obtain 

and similarly for h: 

Assuming that these two envelopes are identical, and form the boundary of the zero 
distribution, we obtain the same ‘boundary equation’ as before in (8): 

- 0. 
ag ah ag ah 

a+, a h  a A  84, 
The LHS of (8) is just the Jacobian of g, h with respect to x, y. 

To see why the same derivative (a$s/d4r)xy is present in both envelope equations 
( 1 1 )  and (12), consider two solution curves to (10) corresponding to fixed values 
&, &, of the parameter differing by a small increment 84,. Let these adjacent curves 
intersect at a point x, y lying on the boundary. Along these curves the corresponding 
values &, , +s2 ,  of the other parameter are obtained by solving the equation h = 0, and 
differ by SI$*. So at the point of intersection (x, y )  both the conditions g = 0 and h = 0 
are satisfied. Consequently the increments 84,, 8&, and the associated derivative, are 
common to both envelopes. 

Now applying (8) to the function f =  g+ih  in ( 1 )  for the Ising model, we obtain 
the ‘boundary equation’ 

(B’C”-  B”C’) sin 4, sin C$s 

+sin( 4, + c$~)[( B‘D”- 8”D‘) sin 4, - (C’D”- CID’) sin 

where we have written B = B’+iB”, etc. 
In order to determine the boundary, one has to solve the boundary equation (13 )  

simultaneously with equation ( 1 )  for the zeros. 
For the quadratic lattice, J3 = 0 so D = 0, and the boundary values of the angles 4r 

and 4s are 0 or T, as expected. For the partially anisotropic triangular lattice, J1 = J2 
so B = C, and now 4, = *&. In generai there is no simple relation between the angles 
along the boundary and it is necessary to solve the boundary equation (13) numerically 
in conjunction with equation (1) for the zeros. The smallest values of (a, b, c)  which 
yield a non-trivial triangular lattice are (3 ,2 ,  1 ) .  The variation of the angles around 
the various segments of the boundary can most easily be displayed by plotting q5.? 
against 4, as in figure 1 .  The complete boundary is shown as full curves in figure 2, 
where ‘interior’ zeros for a 16 x 16 lattice have also been plotted. 

On the quadratic lattice with D = 0 there is substantial simplification in ( l ) ,  which 
becomes 

g = A’+ B‘ COS d r +  C’COS & = 0 

h = A f +  B“ cos q5,+ C“COS 4s = 0. 
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Figure 1. Graphs of 9, plotted against qhr ,  showing the variation in the angles along the 
various segments of the boundary (as in figure 2)  for a (3 ,2 ,  1)  anisotropic triangular 
lattice. For convenience we have altered the range of the angles. The complete diagram 
is obtained by reversing the signs of both qh, and 6,. 
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Figure 2. The complex z plane showing the boundary lines (full curves) for a ( 3 , 2 ,  1) 
anisotropic triangular lattice. The various segments are labelled A-H. ‘Interior’ zeros for 
a 16 x 16 lattice have also been plotted. The complete distribution of zeros is symmetrical 
on reflection in both axes. 

These are two simultaneous linear equations for the cosines, with solution 

COS rPr = [A”’’- A”C’] / [B’C’’ -  B‘’C‘] E 

COS 4, = [A‘,’’- A ” B ’ ] / [  C’B‘’- C”,’] E F. 

Now differentiating with respect to x and y in turn: 

84 a4 
ax ay 

a4 84s 
ax ay ’* 

-sin dr-r= E, 

-sin tPs-* = F 

-sin dr2= E, 

-sin 4,- = F, 
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Taking the derivatives of 4, and 45 from (16), one can in this case construct the density 
of zeros directly from the basic formula (Stephenson and Couzens 1984), obtaining 

27r2G(x ,  y )  = = J(E,F, - E,F,)l/(sin 4r sin +s). 

However, the calculation of the derivatives of E and F is extremely awkward and it 
is easier to use the formula ( 2 2 )  derived below. 

A similar direct calculation can be made for the partially anisotropic triangular 
lattice, for which B = C. The resulting formula for the density of zeros resembles (17) 
and is equally inconvenient for calculation. 

The density of zeros per lattice site is given by 

But 

where the minus sign is essential since the variables are interrelated by (1). This 
apparently little known result may be proved by writing equations (7)  and (9) in matrix 
form: 

and taking the determinants of both sides. Moreover, using the Cauchy-Riemann 
conditions, the Jacobian of g, h with respect to x ,  y is 

So we obtain 

For the Ising model the remaining Jacobian, in the denominator of ( 2 2 ) ,  is given 
explicitly as in ( 1 3 ) .  All the quantities in this form for the density of zeros can be 
calculated directly, using (1) and ( 1 3 ) .  

Finally we observe, on applying the ‘boundary equation’ (8) to the denominator 
in  ( 2 2 ) ,  that the density of zeros is infinite on the boundary, provided f ’ ( z )  f 0, which 
is generally the case except at critical points, where (1) is a perfect square. 
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